International Journal of

l'IEAT and MASS
TRANSFER

PERGAMON International Journal of Heat and Mass Transfer 45 (2002) 1127-1148

www.elsevier.com/locate/ijhmt

Heat transfer by laminar Hartmann flow in thermal entrance
region with a step change in wall temperatures: the Graetz
problem extended

J. Lahjomri #, A. Oubarra ®, A. Alemany >*

& Département de Physique, Faculté des Sciences Ain Chok, Université Hassan II, km 8 route El jadida,
Maarif B.P. 5366, Casablanca, Morocco
® Laboratoire des Ecoulements Géophysiques et Industriels, B.P. 53, 38041 Grenoble Cedex 9, France

Received 22 December 2000; received in revised form 23 February 2001

Abstract

Thermally developing laminar Hartmann flow through a parallel-plate channel, including both viscous dissipation,
Joule heating and axial heat conduction with a step change in wall temperatures, has been studied analytically. Ex-
pressions for the developing temperature and local Nusselt number in the entrance region are obtained in terms of
Peclet number Pe, Hartmann number M, Brinkman number Br, under electrically insulating wall conditions, y = —1
and perfectly conducting wall conditions, y = 0. The associated eigenvalue problem is solved by obtaining explicit
forms of eigenfunctions and related expansion coefficients. We show that the nonorthogonal eigenfunctions correspond
to Mathieu’s functions. We propose a new asymptotic solution for the modified Mathieu’s differential equation. The
asymptotic eigenfunctions for large eigenvalues are also obtained in terms of Pe and M. Results show that the heat
transfer characteristics in the entrance region are strongly influenced by Pe, M, Br and y. © 2002 Elsevier Science Ltd.
All rights reserved.

1. Introduction

The main purpose of this paper is to determine the temperature field and the improved Nusselt number in the
thermal entrance region of steady laminar MHD flow through a parallel-plate channel, including viscous dissipation,
Joule heating and axial heat conduction with a step change in wall temperatures. This problem corresponds to the study
of transverse magnetic field influence on the fundamental extended Graetz problem.

In the absence of magnetic field, it is well known that the extended Graetz problem is defined when axial heat
conduction is included in the analysis and its effect becomes important especially at small Peclet number, as in liquid
metals for example. The problem has long been in the past and recently the subject of numerous studies, analytical [1—
10] and computational [11-16] to generate methods for the extensions of the original Graetz problem without axial heat
conduction [17]. In considering the effect of low Peclet number flow on heat transfer, it is often necessary to investigate
the problem in two semi-infinite regions of a channel, in upstream (—oo < x < 0) and downstream (0 < x < 400) re-
gions. The temperature field is then determined in both regions and the two solutions are matched at x = 0 where
heating (or cooling) starts. Previous studies have clearly shown that this type of problem is related to the determination
of a set of eigenvalues and eigenfunctions of a Sturm-Liouville nonselfadjoint operators. The result is such that the
eigenfunctions became nonorthogonal and a simple determination of the related expansion coefficients by a classical
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Nomenclature

a parameter of Mathieu’s differential equation, Eq. (24)

A,, B, expansion coefficients

Ay 4 complex expansion coefficients used in Mathieu’s solution
half-width between parallel-plate channel

B, external uniform magnetic field

Br = PrEc Brinkman number, uU?2/k(Ty — Tr)

Crapin complex expansion coefficients used in Mathieu’s solution

ch(x) hyperbolic cosine function

do,dy,d>, d; constants of the fully developed solution

D(M,n) dimensionless dissipation function

E(p,k) elliptic integrals of the second kind, [’[1 — k*sin o]'/*do

Ec Eckert number, U2 /C,(Ty — Tt)

E. electric field component

F(o,k) elliptic integrals of the first kind, [[’[1 — k*sin® o] "/*do

S 80 80,8, g% h,  eigenfunctions

Jis3 Bessel function of the first kind

Jz current density component, Eq. (2)

M Hartmann number, Byb\/a/u

Nutgs, asymptotic Nusselt number

Nu; local Nusselt number (i = 1,2), Eq. (18)

Pe Peclet number, 3U,b/20

Pr Prandtl number, v/a

q parameter of Mathieu’s differential equation, Eq. (26)

sh(x) hyperbolic sine function

90 parameter, Eq. (24)

T; dimensional temperature distribution in the upstream region (i = 1) and downstream region
(i=2)

T; prescribed wall temperature in the downstream region

Ty prescribed wall temperature in the upstream region

th(x) hyperbolic tangent function

u(n) dimensionless velocity profile, 2/3(u,(1)/Un)

Un mean fluid velocity of Hartmann flow

u.(n) velocity profile component in the axial direction of Hartmann flow, Uy, ((chM — chMy)/
(chi ~ (sha/M)))

X axial coordinate

y transverse coordinate

z variable, Mn/2

Greek symbols

b, eigenvalues in the downstream region

I'(x) gamma function

A eigenvalues in the upstream region

z external loading parameter, E,/ByUp,

n dimensionless transverse coordinate, y/b

0; dimensionless temperature distribution, 7, — T;/Ty — Tt

Op.; dimensionless bulk temperature, Eq. (17)

a electric conductivity

¢ dimensionless axial coordinate, x/bPe

method fails. Recently, the present authors [10] have determined the explicit form of the true eigenfunctions and have
presented a more efficient procedure for the direct determination of these expansion coefficients for any given fully
developed velocity profile.
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When the magnetic field is included in the analysis, the influence of this field on the process of heat transfer is
globally realized by the modification of the velocity profile and the problem is controlled by the magnitude of three
parameters: Peclet number, Pe, which characterizes the ratio of axial convection to axial conduction; Hartmann
number, M, which characterizes the ratio of electromagnetic forces to viscous forces and Brinkman number, Br, which
represents the ratio of overall dissipation (viscous and Joule heating) to conduction due to the temperature difference at
the walls. In this case, we have difficulties similar to those encountered in the case with no applied field (i.e., nonor-
thogonality of the eigenfunctions and the difficulties in determining both the eigenfunctions and the expansion coef-
ficients). The problem of heat transfer by laminar flow between parallel-plates under the action of transverse magnetic
field in two semi-infinite regions, i.e., —0o < x < oo was first investigated by Nigam and Singh [18]. These authors used
the method of Fourier-sine series and determined only approximately the first three eigenvalues and the corresponding
expansion coefficients are calculated by using a variational method. This method yields erroneous results for the im-
portant thermal entry region heat transfer. Indeed, the Fourier series representation is extremely slowly convergent in
the thermal entrance region and requires a very high number of terms and the resulting equation for eigenvalues in-
volved determinant of infinite order. Consequently, the difficulty of computing the eigenvalues and the determination of
corresponding expansion coefficients increased considerably when the order of the determinant becomes larger. Thus,
the accuracy of local Nusselt number reported in [18] is therefore questionable. Michiyoshi and Matsumato [19] studied
the same problem by neglecting both the effects of viscous dissipation and axial heat conduction under zero net current,
open circuit condition. Hwang et al. [20] obtained numerical solutions by implicit difference technique including the
effects of viscous and Joule dissipation, nonzero net current and neglecting the axial conduction for the case of pre-
scribed uniform wall heat flux conditions. The problem of MHD channel flow heat transfer with boundary condition of
the third kind by neglecting the heat generation was studied by Javeri [21]. The energy equation was solved by applying
the Galerkin—Kantorowich method of variational calculus. The temperature evolution in the entrance with semi-infinite
region (0 < x < +00) of an MHD channel by including viscous dissipation, Joule heating, nonzero net current, and
axial conduction has been studied by Lecroy and Eraslan [22]. The associated eigenvalue problem was solved by the
Galerkin method for the case of constant wall temperature, for constant wall heat flux and with the entrance condition
of uniform fluid temperature at x = 0. Wu and Cheng [23] studied a similar problem with uniform but unequal wall
temperatures in the upper and lower plates with the same entrance boundary condition under open circuit condition.
The eigenvalues and the corresponding eigenfunctions were solved by the Runge-Kutta method. However, if one in-
cludes both viscous dissipation, Joule heating and axial heat conduction, the entrance condition of uniform fluid
temperature at x = 0 must be regarded as an approximate one because it is physically unrealistic. In reality, because of
the heat conducted upstream, transverse variation in fluid temperature exists in the region x <0 and the temperature
profile at x = 0 is greatly affected by axial conduction and heat generation. Consequently, the local Nusselt numbers are
different from those obtained by assuming a flat temperature profile at x = 0, while the asymptotic Nusselt numbers in
the thermally developed region (x — +o0) for the two problems will be the same and are independent of both Peclet and
Brinkman numbers.

It is emphasized that none of the previous studies give any explicit form of the nonorthogonal eigenfunctions and the
related expansion coefficients. Furthermore, even for laminar conditions, no precise solution has ever been reported on
the values of the local Nusselt number in the important thermal entrance region, precisely in the immediate neigh-
borhood of x = 0. The main difficulty in the analysis comes from a singularity which exists for the channel wall
temperature at x = 0, which in general causes a problem for the numerical modelers. Therefore, an analytical solution
near the entrance is required to resolve the singularity.

In this paper, we give the analytical solution of the extended Graetz problem with applied magnetic field taking into
account the transverse variation in fluid temperature in the upstream region (x < 0). We show that the nonorthogonal
eigenfunctions in upstream and downstream regions correspond to Mathieu’s functions. Unlike the previous studies,
the eigenfunctions and the corresponding expansion coefficients are obtained in an explicit manner. We propose a new
asymptotic solution for modified Mathieu’s differential equation for moderate and large values of Hartmann number.
This new solution does not exist in the mathematical literature. The asymptotic eigenfunctions for large eigenvalues are
also obtained in terms of Hartmann number and with any values of Peclet number. We show that the solution efficiently
resolves the singularity. Results show that temperature profiles and local Nusselt number are affected by Peclet,
Hartmann, Brinkman numbers and various electrical conditions of the walls.

2. Statement of the problem and mathematical formulation

Consider the extended Graetz problem with prescribed external uniform magnetic field B, as shown in Fig. 1. A
viscous, incompressible and electrically conducting fluid or liquid metal flows through a long two parallel-plate channel
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Fig. 1. Problem description.

with laminar regime. We are interested in the part of the channel for which the flow is fully developed. The velocity
profile component in the axial direction x for this flow is the well-known Hartmann profile

(chM — chM (y/b))

4<0) = Un (chig = (shit /1))

The channel walls are maintained at temperature 7; for x <0 and 7; for x > 0. All fluid properties (density p, kinematics
viscosity v, dynamics viscosity u, electric conductivity o, thermal conductivity &, specific heat C,) are assumed to be
constant. The free convection caused by the temperature difference is negligible.

2.1. Governing equations

For the hypothesis mentioned above, the energy equation for MHD problem, including viscous dissipation, Joule
heating, nonzero net current, governing the field temperature in the semi-infinite upstream and downstream axial re-
gions taking into account the symmetry of the problem with respect to the flow axis is given by

oT, T, T, du, \* 2 (i=1—-00 <x<0)
pCpux(y)a—k{axz+ay2]+u(dy) +; for{(i 2.0 < x < +00) and 0 <y < b, (1)

where j, is the electric current density component which can be expressed in terms of u,(y) and the constant electric field
component E,, and the applied transverse magnetic field B, by Ohm’s law as:

jz = G[Ez + Bqu(y)] (2)

Introducing the following dimensionless variables and parameters:

X
ézﬁv
-7
'/Ifb7
u(n) 2u.(n) 2 (chM —chMn)
=370, T3 (chM — (shm /M)’
_L-T
=77

By using Eq. (2), the dimensionless form of the energy Eq. (1) becomes

69,~ - 6291' 1 6291- (l = 17 —00 < é < O)

u(n)6_£_6n2+P_eza_§2+BrD(M’n) for{(i:270<é<+oo) and 0 <n <1, (3)
where
M2sh’ My 2{ chM — chMy r
D(M,n) = Y P il B
M) =t — (st /) £ chM — (shM /M)

is the term due to a viscous dissipation and Joule heating which represents the heat source in the energy equation.
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The dimensionless parameters in Eq. (3) are defined as follows:

Pe = 3U,b/20.= Peclet number, and « = k/pC,, a thermal diffusivity.

M = Byb\/o/u = Hartmann number.

Br = PrEc = pU? /k(T) — Tr) = Brinkman number.

Pr=Prandtl number, v/o.

Ec=Eckert number, U2 /C,(T, — Tr).

% = E./BoU, is the external loading parameter characterizing various operational modes of the channel; y = —1
for electrically insulating walls or open circuit condition and y = 0 for perfectly conducting walls or short circuit
condition.

The boundary conditions associated to (3) are well known:

66,'

a—ﬂ:o ifp=0V—oo<é<+oo (i=1,2), (4)
0,=1 if =1 VELO, (5)
0,=0 ifnp=1 V>0, (6)
00, 00, .

-2 = < )
Y ifE=0Vv0<y<1 (8)

Conditions (7) and (8) express the continuities of the temperature and the heat flux at the entrance section ¢ = 0. For
infinitely large values of |£|(¢ — £o00), the dimensionless temperature is the particular solution of the following
equation:
az('),v
on?
It is interesting to note that the dimensionless velocity profile
2 uy(n)
u(n) = 30,

is independent of the electric conductivity of the walls.

= —BrD(M, ). 9)

2.2. General form of the solution

For a given fully developed velocity profile u(n7), we propose a separation of variables method to generate the general
solution of elliptic Eq. (3) in the upstream and downstream regions verifying the conditions (4)—(6) and (9). This
solution can be represented by infinite series of eigenfunctions given by:

01(&,n) = 1+ > Aufu(n) exp(72¢) + BrF (M, ) for ¢<0, (10a)
n=1
0>(&,m) =Y Bugu(n) exp(— &) + BrF(M,n) for &> 0 (10b)
n=1
with
F(M,n) = dy + din* + dochMn + dsch2My, (11)

where the constants dy, d), d, and d; are defined in terms of Hartmann number, M, and the parameter, y, as (see [22])

, M? N M(M? —2)chM  M?*(ch®M + (2M? — 8)ch’M)
x

d()ZX

2 (MchM — shM) 4(MchM — shM)? ’
P ,M* MPchM _ Mid’M
T /‘(MchM —shM)’  2(MchM — shm)?’ (12)
M 2M2*chM
d2 = 2% + 2
(MchM —shM) ~ (MchM — shM)
2

~ 4(MchM — shm)*



1132 J. Lahjomri et al. | International Journal of Heat and Mass Transfer 45 (2002) 1127-1148

The 4, and f, designate the real eigenvalues associated with, respectively, the eigenfunctions f, and g,. 4, and B, are
the constants of integration. The eigenfunctions f, and g, are then the solutions of the following differential equa-
tions:

dZ 5 )2
ap + 4 {PZ (11)]/”,170 (13a)
d n
S g2 B utn]an =0 (13b)
satisfying the boundary conditions:
f/(0)=0 and f,(1)=0, (14a)
g(0)=0 and g,(1)=0. (14b)

The fundamental problem is then to determine the eigenvalues Z,, 3, and the expansion coefficients 4, and B,. From the
boundary conditions (14a) and (14b) the eigenvalues must be roots of characteristic equations f,(1) = 0 and g,(1) =0
from the boundary conditions (7), (8) we obtain the following equations with unknown expansion coefficients 4, and
B,:

LD Aufuln) = Buga(n), (15a)
n=1 n=1

D Aufun) ==Y BiBiga(n). (15b)

n=1 n=1

The eigenproblem (13a), (13b) and (14a), (14b) is different from the classical Sturm-Liouville problem, because the
eigenvalues occur nonlinearly in (13a) and (13b). Consequently, the eigenfunctions are not orthogonal. Recently in
[10], we have studied the extended Graetz problem with Poiseuille flow and we have presented a new procedure for
the determination of the expansion coefficients 4, and B,. This procedure has the advantage of giving the explicit
forms of these coefficients for any arbitrary given developed flow in comparison with the other methods used
earlier (variational method, Gramm-Schmidt procedure) and can be applied to other boundary conditions such as
the Neumann or Robin boundary conditions. These coefficients can be written, by using (15a) and (15b), as (see

[10]):
, (16a)

e = [ [ nnanf [[[Fs-n]ien-2/150]
B, = /01 L%’z’z—i-u(ﬂ)}gndﬂ/ ./0.1 ﬁ’fﬁ (n)}gfdn = —2/[1,, agé’lgl) ‘/;/z,,‘ (16b)

It is interesting to note that the solution of the problem with Dirichlet wall boundary conditions in the absence of
heat generation (Br = 0) will always be expressed in the forms given by the first terms of (10a), (10b) and Egs. (16a) and
(16b) for any given fully developed flow, and can be applied to non-Newtonian fluids for example.

For large values of Peclet number (Pe — co) and when M = 0 and Br = 0 the solution (10a) and (10b) tends to the
classical Graetz problem without axial conduction, since the eigenvalues f, tend to those of the ordinary Graetz
problem, given by Eq. (13b), where Pe — oo; the eigenvalues 4, go to infinity, and from Egs. (16a) and (10a) 0, (&, n)
tends to 1 (a flat temperature profile) in the upstream region.

The dimensionless bulk temperature 0,,(¢) and the local Nusselt number Nu;(€) (constructed by hydraulic diameter)
can now be defined and obtained in the upstream and downstream regions, by:

_ fo 1)0; d11
0,4(&) = i ( Yan (17)

Substituting Eq. (17) into Eq. (18) by using Egs. (10b) and (13b), we can deduct the expression of local Nusselt number
in the downstream region:
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> o1 Bag, (1) exp(—B,¢) + BrF'(M, 1)

Nu(&) = Nuy _8 if £>0. (19)
3 00 2 2 2 2 1 1
S5 Baexp(=B28) (2 (1)/B) + (B2/Pe?) Jy galn) dn] = Br f; uln)F(M, m)di
The terms multiplied by Br in (19) can be evaluated as

, M3chM

F(le):—XZMZ—ZXMZ—m: (20)
: 2M shM chM  (M?+2)shM  2chM

/0 ulmE (M. ) dn = 357507 —snn) {do (ChM - 7) +d [T B VR VE

sham 1 sh2MchM  shM  sh3M
“(%ir 3) | I} 2

a2 XM 2M 6M

Notice that for Br = 0 the asymptotic value of the local Nusselt number Nu,, corresponding to the thermally developed
flow £ — oo without heat generation, can be obtained by keeping only the first term of the series of equation (19)

Nuas.ziﬁ?/l /ﬁfolgl(”)d”].

Pe’gi(1)
and for Br # 0 the asymptotic value of the Nusselt number becomes independent of both Brinkman number and Peclet
number when viscous and Joule dissipation are included in the analysis and can be written as

. (22)

8 F(M,1)

Nuys = — = T -
3 [y u(n)F (M, n)dn

(23)

2.3. Eigenfunctions for Hartmann flow

It is noted that when M = 0, one obtains u(57) = 1 — 5> (Hagen-Poiseuille flow) and the eigenfunctions correspond to
confluent hypergeometric functions which are given explicitly in [10].

For M # 0, let us examine the solution of the differential equations (13a) and (13b) for the boundary conditions
(14a) and (14b) in the case of Hartmann flow. We introduce new variables and parameters:

2
M are - a:qchM(z—i), (24)
9M2chM([1 — (thM /M) 90

and a new function:

h(z) = g.(z) if ¢ = —4p2/3M>*chM (1 — (thM /M), (25)
g fulz) if g =422/3M>chM (1 — (thM/M)).
Egs. (13a) and (13b) are then grouped and transformed to a new differential equation verified by #,(z)
2
h
(1122" — (a — 2qch2z)h, =0 (26)
with the boundary conditions
dh, M
& (0)=0 and h"(?) =0. (27)

Eq. (26) corresponds to a standard form of Mathieu’s modified differential equation with real parameters « and ¢ [24].
An algorithm for the computation of Eq. (26) over a wide range of parameters a, ¢ and z does not seem to exist.
Computational difficulties arise as ¢ and a become large precisely for large order n of eigenvalues. Therefore in the next
two sections we obtain the appropriate analytical solutions for small and large values of parameter q.
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3. Analytical solution
3.1. Solution for small value of q

Let us formally assume the possibility to express the solution by an expansion in terms of the parameter g as
= q"Vula,2), (28)
m=0
then the functions ¥, satisfy the following recurrence differential equations:

{V”—aVO 0,

V' —aV, = —2ch2z V. m=1,2.3, ... (29)

So, after several iterations and integration of Eq. (29), we can built a general form of the solution for a # 0 and g # 0
not integers as follows:

h(z) =33 g (Ag penhzVa+ ¢ C{)’Aﬁnzshz\/z;)

+ Z Z q4p+”ZZP{A (n—k) 4p+nCh(\/— - 2(" - ))Z +An k4p+n (\/E + 2(” - k))Z

s [Cﬁ(nfk)‘éwnsh(f —2(n = K))z+ Cgpensh(v/a+ 2(n — k))z} } (30)

The hyperbolic functions ch, sh and the coefficients 4, ,,, ., C;, 4,,, are complex numbers if @ < 0 or reals if @ > 0. If we

report (30) in (26) we obtain some recurrence relation formulas which determine these coefficients. These recurrence
relations are given in Appendix A. Since, the parameter ¢ is small, the series (30) is rapidly convergent and can be
truncated to order 6 as

h(z)=Vo+ah + Vo + @V + ¢ Vi + ¢ Vs + ¢°Vs + O(q) (31)
with

—Aoochz\/a.
"= ZA ch(va + 2k)z,

k=—1

V, = ZA ZCh \/_+2k)Z+ C()OZSh(\/_ )

k=-2
v, = ZA sch(va + 2k)z + Zc,:lzsh (Va + 2k)z,
k=-3 k=—1
4 2
Ve= Y Af,ch(vVa+2k)z+ Y Cyzsh(va+ 2k)z + A) 2 ch(Vaz), (32)
k=—4 k=-2
5 1 3
Vs = Z A} seh(va + 2k)z + Z A} sZch(va + 2k)z + Z Cpyzsh(va + 2k)z,
k=-5 k=—1 k=-3
6 2 4
Vo= Y Afsch(va+2k)z+ Y A; Zch(Va+2k)z+ Y Cf zsh(va + 2k)z + C) ,2'sh(vaz)
k=—6 k=-2 k=—4

and the coefficients appearing in (32) should be determinate and are given explicitly in Appendix B.

3.2. Solution for large value of ¢

For very large values of parameter ¢ which correspond to the case of very large eigenvalues, the asymptotic solution
of Eq. (26) in this case can be obtained by invoking the Wentzel-Kramers—Brillouin (WKB) approximation. By re-
placing z by n we have
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[ a-2 71"
hn(ﬂ)—{m] cosQ,(n) for 0<n<1, (33)
where
Lo
O
0
_ [+ 21" P[F(5.k) = Flo.k) + E(p,k) = E(3,k)] if hy(n) = gu(n). (34)
29— a " [F(@:3) ~ E(@ %)ch(@)[wchm—a]l” if hu() = /(1)
with
_[a-2q 12 _ . [a—2qchMy 12 o Mn
ki{a+2q} , (pfarcsm{ﬁ} and qbfarcsm[th(T)} (35)

Eq. (33) is not a good approximation to the solution near the wall for Pe — oo, (g0 — o0) and  — 1, since it has a
singularity there because a — 2gchM, but it is clear that for finite value of Peclet number Eq. (33) is valid near the wall
(n—1).

To satisfy the boundary condition 4,(1) = 0, thus, we derive the asymptotic transcendental formula for the large
eigenvalues

Qn(l):n(n—%) n=123... (36)

The roots of Eq. (36) represent, therefore, the desired asymptotic eigenvalues for finite Peclet number. From Eq. (33),
the asymptotic expression for the derivative of the eigenfunctions in the downstream region at the wall can be found to
be

1/4

g(1) = (=1)

. B 2(chM — 1) B
{3( (37)

Pel”2 | 3(chM — (shM /M) | P&

For large Peclet number Pe — oo, the effect of axial heat conduction can be neglected and the uniform asymptotic
expression for g,(17) can be established by using similar analysis used by Sellars et al. [25] and Housiadas et al. [26] for
electrically nonconducting fluids (M = 0). We provide a WKB asymptotic expansion valid for 0<n < 1 (g(y)) and an
approximation to the exact solution valid for # near the wall (g!(n)), as follows:

chM — 1
8:01) = {m

1 o1 2174 12 chM — 1 /4 12 2\*? MthM 172 3/2
g,,("l):(—l) W(Tﬁﬁn)/ [m:l (1—’7)/]1/3|:(§) ﬁ,,l:m:l (1_;1)/

where Jj 3 is the Bessel function of the first kind. The characteristic equation for the eigenvalues in the case of Pe — oo,
becomes

Qn(1)=n<n7é), n=123... (40)

1/4
} cosQ,(n) for0<n <1, (38)

, (39)

By using the method of asymptotic matching of the piecewise WKB approximation and some intermediate results, we
established the following matching function that connect (38) and (39)

chM — 1 1 2\ Mthv Y2 ;
Q) -1 = —_ 1—n)"?. 41
200 = S| e |20 - (3) 8w -0 (@)
The asymptotic formula for the eigenfunctions uniform throughout the whole interval 0 < # < 1 can be written as
&) = gy(n) + g,(n) — &' (n)- (42)

The expressions of the large eigenvalues, the derivative of the eigenfunctions at the wall and the expansion coefficients
B, in Eq. (16b), for Pe — oo, can be written as
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1/2
_3n _shM _ImN S 2T _g(" -
B, =3 M(chM M) (nrr 12)/2 (chM + 1) [F(z,k> E(z,k)], n=1273..., (43)
, , 2 12 chM — 1 Ve omtm Y0
&) = U s [chM—(shM/M)} {1—(thM/M)] B% m=123.., (44

_ ()22 3)m {chM - (shM/M)] a {chM - (shM/M)} 2 { MthM
1—

1/6
—7/6
© WG B ) L e G+ 1 i) B

When M — 0 one can easily verify that Egs. (43)-(45) tend to the solution of original analysis of Sellars et al. [25] for
nonconducting fluid and when axial conduction is negligible (Pe — o0). Indeed when M — 0,

chm — 172
k= [chM+1} -0

the elliptic integrals for small k& can be written as

(34~}

and

F(g,k) zg-i-kzg.

Thus the constants f3,, g/ (1) and B, for M = 0 can be simplified as follows:
ﬂn:4n_(7/3)7 112172,3...7 (46)
(_1)n21/6(n)1/2 5/6

g;(l)zm n (47)
n+l
B, :4(_75137)/2 r(2/3)327%200p 7. (48)

hese results are in agreement with the analytical results of Sellars et al.

4. Results and discussions

We performed our analysis for Pe = 1.5, 5, 15, oo with various values of Hartmann number M =0, 5, 10, 50,
Brinkman number Br =0, 0.1, 1, over the range of axial distances 107* < ¢ < 10 under electrically insulating wall
conditions, y = —1 and perfectly conducting wall condition, y = 0. It is emphasized that these are the first results in the
literature obtained for axial distance ¢ > 10~ not only for thermal entrance region of MHD channel but also for
entrance region without applied magnetic field.

The eigenvalues 4, and f, zeros of Mathieu’s functions have been numerically computed using a Newton—Raphson
algorithm. The derivatives and the integrals appearing in expressions (16a), (16b), (19), (22) and (23) giving the im-
portant constants, the local and asymptotic Nusselt numbers have been calculated analytically by derivation and in-
tegration of Mathieu’s functions.

The validity of our analytical solution is verified by the comparison presented in Table 1, between the eigenvalues f,
in the downstream region obtained from the present analysis and those calculated by LeCroy and Eraslan [22] using the
Galerkin method (5, and Pe in the present definition are equivalent to /(3/2)f; and (3/2)Pe*, respectively, in LeCroy’s
definition). It is clear from this table that the eigenvalues agree very well with the previous investigation. The results are
identical to five decimal places. Table 1 also presents the results obtained from the WKB approximation of the present
analysis given by Egs. (36) and (40). It is also clear from this table that for small and moderate Peclet numbers the
absolute errors [, — [,],qmp | between results obtained from solution (31) and asymptotic WKB approximation given
by Eq. (36) decrease as n increases and the asymptotic evaluation by WKB of the eigenfunctions is successful for large n.
The two results agree very well with eight decimal places for n > 500 for Pe = 1.5 and 5. However, for very large Peclet
number (Pe — o), with increasing n, the absolute errors increase and ultimately become unacceptable, so solution (31)
becomes inaccurate for very large order n. In conclusion, for small Peclet number solution (31) can be used without
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Table 1
Eigenvalues in the downstream region for M = 10 with various values of Peclet number and comparison with the results of LeCroy and
Eraslan [22]

Pe n ﬂn (present work) ﬂn [22] [[gn]asymp. |[f” - [ﬁn]asymp_‘
(present work)
1.5 1 1.2926202 1.2926194 1.3138492 0.021
2 2.5136936 2.5136915 2.5218913 0.0082
3 3.3214605 3.3214598 3.3250405 0.0036
4 3.9682137 3.9682112 3.9700369 0.0018
15 8.2208848 8.2209124 8.2209462 0.00006
16 8.5026574 8.5027378 8.5027094 0.00005
500 48.50864274 48.50864275 10-8
1000 68.6242147375 68.624214736 10~
5 1 1.7035538 1.7754100 0.072
2 4.0411310 4.0865206 0.045
3 5.6208263 5.6429016 0.022
4 6.8655426 6.8772988 0.012
500 88.53134447 88.53134452 5% 1078
1000 125.26682830 125.26682832 2x 1078
15 1 1.8152752 1.8152727 1.9192628 0.10
2 5.1836868 5.1836811 5.3262302 0.14
3 7.9679554 7.9679514 8.0654224 0.097
4 10.2622276 10.262222 10.3236818 0.061
15 24.7478461 24.754999 24.7502003 0.023
9 1 1.8332912 1.8332880 1.6203594 0.21
2 5.6037011 5.6036863 5.5092219 0.094
3 9.4547859 9.4547845 9.3980844 0.057
4 13.3275014 13.3274530 13.2869469 0.040
5 17.2074411 17.207426 17.1758093 0.032
6 21.0906320 21.0906260 21.0646718 0.026
11 40.5242094 40.5089843 0.015
20 75.92592003 75.5087468 0.417
50 193.6858525 192.1746216 1.51

resorting to the WKB approximation, while for very large Peclet number the WKB approximation becomes un-
avoidable beyond some order n and the calculation in this case can be optimized by suitably combining the two
solutions.

Notice that although the eigenvalues in the downstream region of the problem of an infinite axial region studied here
are the same as the eigenvalues of the problem of semi-infinite region [22], the solution for the two problems is different
for small Peclet number, because the expansion coefficients B, in Eq. (16b) are different for the two problems and
depend on the entrance boundary conditions at ¢ = 0. This difference also exists for nonconducting fluid (M = 0).
However, when Pe — oo the two solutions are identical.

Note that the infinite series in Egs. (10a) and (10b), representing the temperature field in the upstream and
downstream regions of the entrance section of heat transfer £ = 0, converge very slowly and require a high number of
terms, especially for low values of Peclet number. This difficulty is due to a slow decrease of the expansion coefficients 4,
and B, of the series. In this study, we have calculated the temperature profiles and the local Nusselt numbers using 1000
terms in the series (10a), (10b) and (19) which allows a satisfactory convergence and a good matching at ¢ = 0 for the
temperature between upstream and downstream region where their comparison is used as the criterion of convergence
[10]. Indeed, if only a few terms have been used for evaluating the series for example of 20 terms, it causes considerable
errors and shows poor matching of the temperature and gives erroneous results in the prediction of local Nusselt
number near ¢ = 0. Similar results have been reported by the authors in [10]. The interest in the use of 1000 terms for
small Peclet numbers is shown and demonstrated in Fig. 2. This figure illustrates the effect of different truncation orders
N of the series in Eq. (19) on the accuracy of a local Nusselt number for Br =0, M = 10, Pe = 5 and Pe = co. The
curves of different values of N, indicate the improved convergence level of local Nusselt number. Clearly, the accuracy
or relative errors of Nusselt number is improved and convergence is achieved with a very high number of terms and
requiring an increase in N as ¢ is decreased. Relative error between curve of N = 1000 for Pe = 5 and curves of N = 900,
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Fig. 2. Effect of different truncation orders N on the accuracy of a local Nusselt number for Br = 0, M = 10, Pe = 5 and Pe = oo and
comparison with the results of Nigam and Singh [18].

100 and 20 are, around & = 10~%, of the order of 4% for N = 900, 81% for N = 100 and 96% for N = 20. The choice of
20 terms, for example, in evaluating Nusselt number is therefore recommended only for axial distances ¢ > 1072 for
Pe = 5. Similar trends can be observed for Pe = oco. The merging of the two curves for N = 50 and 80 indicates that the
convergence of Nusselt number is achieved with N = 50 around & = 10~*. The comparison between the two curves for
Pe = 5 and oo with the same value of M indicates that the axial conduction effect disappears completely at ¢ = 0.3. Fig.
2 also shows a comparison of the local Nusselt number, obtained in this work with results of Nigam and Singh [18] in
the case of negligible axial heat conduction (Pe = co) which used N = 3 terms in evaluating Nusselt number where the
expansion coefficients were calculated approximately by variational method (Nu in the present definition is equivalent
to 4Nu* in Nigam’s definition). The results are in agreement with data of these authors for axial distance ¢ > 0.2, but for
¢ < 0.2 there exists a substantial difference between the two results due to inaccuracies in Nigam’s numerical values of
expansion coefficients B,.

4.1. Main results for Br =0

The typical radial dimensionless temperature profiles
_L-I
r ]—b _ 7—%7

i=1,2

with the dimensionless axial coordinate, ¢ = x/bPe for strong axial heat conduction Pe = 5, by neglecting viscous and
Joule dissipation, Br = 0 and various values of Hartmann number M = 0, 5, 10, 50 are presented in Fig. 3. The figure
also presents the results of the case of no applied magnetic field M = 0 given from the analytical solution of reference
[10]. It can be seen that the temperature profiles retain globally the same shape as in the absence of magnetic field. It is
also shown that when M increases, the dimensionless temperature 0 is reduced in the central core of the channel for the
whole range of £. On the contrary, outside the core, at the external part of the flow the temperature distribution tends to
be higher when M increases. This is particularly sensitive in the section corresponding to high temperature level (the
entrance region ¢ < 0.05). The decay of 0 in the central core could be attributed to decay of the velocity field in this
region due to Hartmann effect. Outside the core the velocity is increased by the magnetic field, due to the global
conservation of the flow rate. In these regions then, the level of temperature tends to decrease when the Hartmann
number increases. Indeed, when M increases and reaches the value 50, the velocity profile becomes almost uniform and
tends to a slug flow (see Fig. 4) in the whole diameter of the channel except near the wall characterized by the well
known Hartmann layer and a strong velocity gradient. Besides one can notice from Fig. 3 that the temperature gradient
does not appear to be affected by the magnetic field. This could be explained by the fixed value of the mean velocity Uy,
identical for all the presented results, corresponding to identical values of the flow rate which controls for the essential
heat exchange in the absence of internal source.
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Fig. 4. Dimensionless velocity profiles of Hartmann flow for various values of Hartmann number M.

The effect of magnetic field on local Nusselt number, corresponding to Br = 0, is shown in Fig. 5. It is noted that Nu
decreases monotonically along the axial coordinates ¢ and increases as M increases. This can be explained by the decay
of bulk temperature 0, at any point ¢ due to Hartmann effect. The heat flux transmitted to the wall being almost
unchanged when the Hartmann number increases, and the decay of the bulk temperature used as reference level for the
definition of the Nusselt number (see Eq. (18)) correspond to an improvement of the Nusselt number. This is in line with
the result of laminar hydrodynamic heat transfer, without magnetic field, in which the asymptotic Nusselt number is
considerably smaller in Poiseuille flow than in slug flow, Bejan [27]. Similar tendencies have already been pointed out by
several authors [18-23].

4.2. Main results for Br # 0

The developing radial temperature profiles at various axial positions in the thermal entrance region for positive value
of Brinkman number Br = 0.1 (under cooling condition) in the case of y = —1 (insulating walls) and the case of y =0
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Fig. 5. Influence of magnetic field on the local Nusselt number for Pe = 5 and Br = 0.
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Fig. 6. Radial dimensionless temperature profiles for Br = 0.1, Pe = 5 under short circuit condition y = —1, for various values of axial

distance ¢ and Hartmann number M.

(perfectly conducting walls) are illustrated in Figs. 6 and 7, respectively. Fig. 8 also shows the influence of M on local
Nusselt number variations in the two cases y = —1 and 0. It is seen that under insulating wall conditions and for
Br = 0.1, the temperature profiles retain the same forms as in the case of Br = 0, while under perfectly conducting wall
conditions the temperature profiles are completely different. The curves for Br = 0.1 and M # 0 represent the effect of
heating by Joule and viscous dissipation while the curve for Br = 0.1 and M = 0 represents the effect of heating by
viscous dissipation only.

For Br=0.1 and y = —1 which represents the minimum of Joule heating condition in the central core of the
channel, the influence of Hartmann number on the heat transfer is determined by the association of two different effects
which act in the opposite sense: the Hartmann effect previously discussed and the effect of heating by Joule and viscous
dissipation. The first effect acts to decrease the fluid temperature in the central core of the channel while the second acts
to increase it. Then, globally, the temperature is improved compared with the case without magnetic field producing an
increase of the temperature gradient at the walls and then an improvement of the heat transfer. This effect is particularly



J. Lahjomri et al. | International Journal of Heat and Mass Transfer 45 (2002) 11271148 1141

90 ] T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T ‘ T
o Br=01Pe=5 %=0
75 —e— M=5
7.0 -
65 —
60
55 —]
50 -

O 45—
40 -
35
301 £=-005-00120001; 005 02 06 5
2.0 —hwssrmmemsessor
R ———
1.0 2
05

00 ‘mmmmmmmm

00 01 02 03 04 05 06 07 08 09

T

0

Fig. 7. Radial dimensionless temperature profiles for Br = 0.1, Pe = 5 under short circuit condition y = 0, for various values of axial
distance ¢ and Hartmann number M.
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Fig. 8. Influence of magnetic field on the local Nusselt number for Pe = 5 and Br = 0.1 under open circuit y = —1 and short circuit,
% = 0 conditions.

sensitive far from the entrance region where the level of temperature is low and consequently where the influence of the
Joule and viscous source becomes important. It dominates the heat transfer in the thermally developed region for
& > 0.05 (see Fig. 6).

For Br = 0.1 and y = 0 which represents strong Joule heating condition everywhere in the flow, the Hartmann effect
(that means the influence of the velocity profile) becomes negligible and the heat transfer is dominated by Joule dis-
sipation effect. Fig. 7 shows that the fluid temperature and the temperature gradient at the wall increase more and more
when M is increasing. Fig. 8 also shows that for y = 0, the local Nusselt number decreases as M increases up to a certain
axial distance & ~ 0.03 and the trend is opposite to that for £ > 0.03. This can be explained from the variations of the
wall gradient temperature and the bulk temperature in the axial direction. Indeed, from Fig. 7, it is noted that near the
entrance section for ¢ ~ 0.001 for example with an increase of M, the fluid temperature at the center of the channel for
M =10 is larger than for M = 5. This also means that the bulk temperature 0, becomes larger for M = 10. While, the
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temperature gradient in the two cases is of the same order for & ~ 0.001. Thus the bulk temperature increases and Nu
decreases with an increase of M near the entrance section by considering the definition of

 4(20/on)],.,
0, ’

For increasing &, for example at ¢ & 0.6 the temperature gradient and the bulk temperature are larger for M = 10 than
for M = 5. However, the increase of 00/0n|,_, is larger than that of 0. Consequently, Nu increases slowly with an
increase of M in the thermally fully developed region.

Fig. 8, for Br=0.1 and y = —1 for minimum of Joule heating condition, shows that Nu does not decrease
monotonically along the axial coordinate. The evolution of the Nusselt number along the flow presents a minimum
value near the entrance region. This can be explained by the fact that, due to the Joule effect, the bulk temperature
decrease more slowly than the heat exchange at the wall which decreases monotonically. After this first stage of
evolution, the decreasing of the wall heat transfer along the flow becomes lower than the decreasing of the bulk
temperature corresponding to an increasing of the Nusselt number which stabilizes at a fix value (which depends on the
Hartmann number) when the equilibrium between the Joule heating and the heat transfer at the wall is reached. This
asymptotic value of the Nusselt number increases when the Hartmann number increases. Fig. 9 compares the evolution
of the Nusselt number along the flow direction for insulating wall (y = —1) and for two different values of the
Brinkman number Br. It can be shown that the results are very similar and the presence of a minimum value for Nu can
be well observed for Br = 1. But this effect is less important because in this situation the bulk temperature is more
influenced by the Joule effect even at the vicinity of the entrance region. Then the equilibrium between Joule heating and
heat transfer at the wall is obtained more rapidly and tends to vanish in the presence of the minimum value. The Nusselt
number evolution becomes monotone for very large value of Br. It can be observed that the location of the minimum
does not depend on the Brinkman number as well as the asymptotic value of the Nusselt number (according to the
theoretical calculation expressed later). For strong Joule heating condition, y = 0, Nu exhibits a monotonically de-
creasing characteristic similar to the case of Br = 0. The results found for the asymptotic Nusselt number Nu,s con-
tradict those obtained by LeCroy and Eraslan [22]. These authors have found that Nu,, for y = 0 is larger than Nu,s for
y = —1 for fixed and large value of the Hartmann number. The characteristics of Nu in the cases of y = —1 and y =0
(see Fig. 8) can be better understood by considering the definition of the asymptotic Nusselt number (i.e., thermally
developed region) for Br # 0 and large values of the Hartmann number M > 1. Indeed, for the minimum Joule heating
condition (y = —1), the fluid is little heated and we can show that for M >> 1, the bulk temperature becomes of the
order of

WM 1
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Fig. 9. Effect of Brinkman number Br and Hartmann number M on the local Nusselt number in the case of insulating walls for Pe = 5.
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The temperature gradient at the wall increases proportionally to the Hartmann number for M > 1 as

a0

P ~ —Br(MthM + th*M) = O(BrM).
N 1y=1

Consequently the asymptotic Nusselt number increases proportionally to the Hartmann number as

4(MthM + th*M
Nuas.%—( % . )=O(M).
For the strong Joule heating condition (y = 0), the induced electrical current is considerable and the fluid is more
heated by Joule effect, so the bulk temperature increases more than the previous case proportionally to M2,

M 2 5 2
Oy =~ Br TJthhMJthh Mfi = O(BrM?).

The temperature gradient also increases as M2,
00

ol = —Br(M? + MthM + th*M) = O(BrM?).

n=1

Consequently Nu,, varies poorly with respect to M and we have

4(M?* + MthM + th’M
Nuyy 7o MMM EINM) g
IM? + MthM + 2th°M — 3

Thus for large values of Hartmann number, Nu,s for y = —1, is larger than Nu,, for y = 0 and the results of Fig. 8 are
justified and understood.

4.3. Application and examples

Two examples are illustrated in Figs. 1012 to have some order of magnitude of the effect of magnetic field on the
radial temperature profile in (°C) and on the local heat flux in (MW /m?) distribution with axial distance x in (m). This
situation may be important for the study of the effect of low Peclet number of high temperature liquid metals with
laminar regime in the presence of magnetic field and could occur in the nuclear reactors if the working fluid is slowed
due to a pump malfunction. Sodium and lithium liquids with different characteristics of the flow are considered. In the
case of sodium liquid (Figs. 10 and 12) at Ty = 538 °C, and 7T;) = 427 °C with physical properties from Ozisik [28]
calculated at the mean temperature T, = Ty + T;/2 = 482.5 °C, p = 838.3 kg/m’, u = 2.43 x 10~* kg/(m s), k = 66.88

A T S T S T IR AU NI A
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T0=538°C ,Tf=427°C,b=2cm

550 — Pe=5Br=36E-12 o M=
1 —&— M=5

\‘\‘\‘\‘\‘\‘\‘\‘\‘\‘\g\‘\

N
]

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020
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Fig. 10. Radial temperature profiles for sodium liquid for Pe = 5, for various axial distances x and Hartmann numbers M.
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Fig. 12. The local heat flux in the entrance region with various values of Hartmann number in the case of sodium liquid for Pe = 5.

W/(m °C), o = 63.1 x 107° m?/s, Pr = 0.0046, Re = 1087 (where Re is the Reynolds number), » = 2 cm with Pe = Re
Pr=5 and Br=3.6x10"" and for lithium liquid at T, =427 °C, and T; =316 °C, p=493.9 kg/m3,
u=42x10"*kg/(ms), k=40.66 W/(m °C), o= 19.48 x 107® m?/s, Pr=0.04375, Re =2286, b =1 cm with
Pe =100 and Br = 1.6 x 10~°. For liquid metals the Brinkman number is very small, so the effect of heating by Joule
and viscous dissipation can be neglected and the heat transfer is controlled only by convection and conduction.

The thermal entrance lengths X7 defined as the axial position at which the temperature at the center line reaches its
fully developed value (the thermally developed temperature) as 7 — T3 /Ty — Ty = 1%, is of order of Xz ~ 0.15 m for
sodium liquid and X7 ~ 1.5 m for lithium liquid for M = 5 (Figs. 10 and 11). We can deduct approximately the law’s
variation of the thermal entrance lengths Xz. It can be shown that X7 is approximately of the order of: Xt ~ 1.5bPe for
M =5, Xt ~ 1.7bPe for M = 0 and Xt ~ 1.3bPe for M = 50.

Figs. 10 and 11 show that X7 decreases as the magnetic field increases. We can notice particularly in Fig. 11 that the
effect of axial heat conduction decreases for Pe = 100 and the temperature tends to uniform temperature profile near the
entrance section except near the wall where we have a thermal boundary layer with a strong temperature gradient. Fig.
12 shows that the local heat flux does not appear to be significantly affected by the magnetic field in the thermally
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developed region and the increase of the local Nusselt number with M (see Fig. 5) is due principally to the decreasing of
the bulk temperature with increasing of the magnetic field.

5. Conclusion

The problem of laminar MHD flow in the thermal entrance region, including viscous dissipation, Joule heating,
various operational modes of the channel and axial heat conduction with Dirichlet wall boundary conditions is ana-
lyzed by considering infinite axial domain. Several conclusions have been obtained.

1. The solution presented here has the advantage over the numerical method by efficiently solving singularity. This is
clearly demonstrated by the results obtained in the neighborhood of & =0 (Figs. 2 and 3 and 5-9). Indeed, the
singularity causes a problem (Gibbs oscillation) for numerical modelers when evaluating the axial temperature deriv-
ative near ¢ = 0 [14]. The nicety of the solution comes from the fact that variational method no longer has to be used
[18] for determination of the expansion coefficients. The validity of the analytical solution is verified by the results of
Table 1, which shows that the eigenvalues are in agreement with those reported in [22].

2. In the absence of viscous dissipation and Joule heating, Br = 0; the results show that the Hartmann effect pro-
duces a decreasing of the bulk temperature.

3. For thermally developing flow when Br # 0, it is shown that viscous dissipation and Joule heating play a sig-
nificantly different role in the heat transfer, depending on the electrical condition of the walls. For insulating walls
(x = —1), it was found that the characteristic curves for local Nu do not decrease monotonically along the axial distance
particularly for the thermally developed region and Nu increases with M. For perfectly conducting walls (y = 0), results
show that Nu decreases near the entrance section with increasing M and the trend is opposite in the thermally developed
region where Nu is little sensitive to M. Unlike the previous study [22], it was found that Nu,s for y = —1, is larger than
Nu,s. for y = 0 for fixed and large values of the Hartmann number.

Appendix A

Equating the coefficients of the same power on ¢*#*", ¢g**+"+2 72 22+! ch(y/a + 2(n — k)) and sh(y/a & 2(n — k)) to

zero we get the following recurrence relations for the coefficients A%, ;) ,,., and C, 4 4,

Al gy + 4% 0 = —2(2p + 1)VaCy,, forp=>0 (A1)
A%,4p+2 +“’1271,4,#2 = =2(2p + 1)VaC, 0apr1 for p =0, (A.2)
A yin F A i F A 20 +2)2p + 1) = =2(2p + 1)VaCyy,,,, for p=0 and n >3, (A.3)
C]I‘4p+| + Cl]‘4p+l =—4p+ 4)on4p+4 for p =0, (A.4)
C12,4p+2 + CE]‘4p+2 = —(4p+4)ady,, s forp=0, (A.5)
Clapin + Cliapin + Conins1 20 +2)(2p+3) = —(4p+4)Vady,, ., forp=0 and n>3 (A.6)
Alyspn=0 fork=zn+1 (p=0andn>1), (A7)
Apgpen | (Va£20) =] 4+ 4% 4y =0 forp>0 and n> 1, (A.8)
Al(nfl),4p+n [(\/E +2(n — 1))2 - a} + A';L_(,Lz).4p+n 1 =0 forp>0and n> (A9)

Abn-2)4pin [(\/Ei 2(n-2))" - } A'i(i 3)dptn-1
F AL apin F2Rp+ D [Va£2(n = 2)|CL 54 2 =0 forp>0and n>3, (A.10)

A" 3).4p+n [(\/E + 2(” - 3))2 - a} +A"ii(r}74)‘4p+nfl +A" )1 2).4p+n—1
+22p+ 1) [Va+2(n—3)|CL) 5 4pin.=0 forp=>0and n>4, (A.11)
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Ai(n—k),4p+n [(\/Ei 2(}’1 - k)) ] +Ai(n k—1),4p+n—1 +Ai(n k+1),4p+n—1 + (zp + 2)(2’p + 1) +(n— k) Ap+n
+202p+ 1) [Va+2(n—k)]CLy 4y apin =0 forp>0 and 4<k<n—1, (A.12)
Cliapn=0 fork=n+1 (p=20andn=1), (A.13)
Clygpin| (Va2 20)' = a| +CLLy 4y =0 forp>0 and n>1, (A.14)
Lty apn [(\/5 +£2(n— 1)) - a] +CL e =0 forp>0 and n>2, (A.15)

ClLiim2) apn [(\/‘v’iz(" -2))° - ] + Ci(n 3)dptn—1
o . Dapnot T (4 +4)[Va+£2(n 2)]A1’(372)14p+n+2 =0 forp>0 and n>3, (A.16)

n 2 n—
Ci(nffﬁ) 4p-+n [(\/a + 2(" - 3)) - a:| + Ci(nl— 4),4p+n—1

+C1 n24p+"1+(4p+4)[\/*i2(n73)] n3)4p+n+2—0 for p>0 and n > 4, (A.17)

n 2 n— n—
Clmi apin [(\/E +2(n—k))” — ‘1] + Cj:(nl—kfl)Aernfl + CL nl—k+1) dpin—1
(2p+3)(2p+2)Ci(n ) dpin (4p—|—4)[\/5j:2(n —k)]A" 3 papina =0 forp>0 and 4<k<n—1.
(A.18)

Cll

Appendix B. Expressions of the coefficients 4", mdpin

mdp+n®

The coefficients 47, 4 4,1, Cls_4)4p. ar€ calculated in terms of the arbitrary coefficient 47 . In order to normalize
Mathieu’s function, we take arbitrarily 4,(0) = 1, this condition fixed 43, and from the recurrence relations given in
Appendix A we obtain:

A5y =1,
AO
glo— 700 B.1
0,1 Z(a _ 1) ) ( )
A, = Z Ay, fornz=2.
k=—n

Ao ap = = o(a, P)Ag.()v

Ay oaps1 = (@, P)Aom

45 04p+2 = O‘(a’P)Aoz + ﬂ(a7p)A80,
A}

04p+3 — = a(a, P)Aoz + p(a, P) 0.1

(B.2)

where
T
(ap) = 2 10,
647ar(a — 1)"T'(p+ 1) (p+3)
and
15a*> — 35a + 8)/n
Bla,p) = ( WV 0

A,
8.64°art (a — 1)" " (a — 4)F(p)T(p+1) "
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AO
o - 0.4p
% Ap+1)Vala—1)
Al
! _ 0.4p+1
0,4p+1 4(2p+ 1)\/[3([1 — 1)7 (B 3)
c _ Aé.4p+2 B (15a* — 35a + S)AgAp ’
W4+ Dvala— 1) 64(2p + Dayala - 'a—4)°
o _ A8‘4p+3 (15”‘ —35a+ 8) 04p+1
MR 4p+ Dvala—1) 642+ Davala— 1) (a—4)’
Ay gpin = UA04p forn>1 and p > (B.4)
Ay 4pin = Un- 1A04p+1 forn>2 and p> (B.5)
n 2 04p 2P +1)
A sapin = Un2y Aigpiz + 6" ZS. CMPZSZ forn>3 and p > (B.6)
. 3 04p+1 217 1)
Al ey = Un3 A 4 + Zsl C04p+, ZSZ forn>4 and p > (B.7)
A’i(nfk).4p+n = Afl*k‘4p+n7 Cﬁ(nfk),4p+n C;l k.4p+n>
where U denotes the complex conjugate.
With
T+
"T 4T+ DI (n+1++/a)’
510) = 1
G DGH VAT Va)
1 1
S$0)==+——+,
V=5t
Crapin = U C04p forn>1 and p >0, (B.8)
Crrapin = ,,,1C5.4p+1 forn>=2 and p >0, (B.9)
n—2
Cyapen = Una { s o4p ZSI —(p+ 1)A8‘4p+4ZS2(j)} forn>3 and p> (B.10)
=1
Copi1 -
Clyapin = U“{CSAI,+3 +—e ZS () —(p+ l)AéApHZSZ(j)} forn>4 and p > (B.11)
=1
For higher-order k > 4, the explicit general forms of coefficients 47 _, apin> Cy_t4pn are increasingly more difficult to

obtain. However, for k > 4 these coefficients can be determined by using recurrence relations (A.12) and (A.17).
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